МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

ГЛАВНОЕ САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЕ УПРАВЛЕНИЕ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО УСТАНОВЛЕНИЮ ОРИЕНТИРОВОЧНЫХ БЕЗОПАСНЫХ УРОВНЕЙ ВОЗДЕЙСТВИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

Москва — 1985
Главное санитарно-эпидемиологическое управление

"УТВЕРЖДАЮ"

Заместитель Главного
Государственного санитарного
врача СССР

А.И. ЗАЯЧЕНКО

4 ноября 1985 г.
М4000-85

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО УСТАНОВЛЕНИЮ ОРИЕНТИРОВОЧНЫХ
БЕЗОПАСНЫХ УРОВНЕЙ ВОЗДЕЙСТВИЯ ВРЕДНЫХ ВЕЩЕСТВ В
ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

Москва - 1985
И гигиены труда и профзаболеваний АМН СССР, ВНИИГИМОТОКС, Ленинградский НИИ гигиены труда и профзаболеваний, Киевский НИИ гигиены труда и профзаболеваний, Новосибирский НИИ гигиены, ВНИИБИХС, 1-й Московский медицинский институт, Уфимский НИИ гигиены и профзаболеваний, Санкт-Петербургский медицинский институт, ВНИИбиотехника, ВНИИ дезинфекции и стерилизации.

старши: Саноцкий И. В., Уланова И. П., Сидоров К. К., Иванов Н. Г., Клепо А. И., Авилова Г. Г., Коган Е. С., Сасинович Л. М., Михеев М. И., ахтунберг И. М., Сперанский С. В., Ротенберг В. С., Новиков С. М., конов Г. Г., Ковыгин В. Г., Бельцер П. Л., Завеев Г. Н.
I. Общие положения

Настоящие Методические указания предназначены для определения величин ориентировочных безопасных уровней воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны.

Методические указания предназначены для НИИ гигиенического профиля, медицинских институтов, токсикологических лабораторий различных министерств и ведомств.

ОБУВ - временный ориентировочный гигиенический норматив, утверждаемый Министерством здравоохранения СССР на 2 года на основании рекомендации секции "Промышленной токсикологии" Проблемной комиссии "Научные основы гигиены труда и профпатологии".

При необходимости продления срока действия ОБУВ либо перевода ОБУВ в ПДК секция пересматривает величину ОБУВ и направляет материалы на переутверждение в Министерство здравоохранения СССР.

С момента утверждения величины ПДК ранее установленный ОБУВ данного вещества утрачивает силу.

ОБУВ устанавливаются на период предшествующий проектированию производства (для условий опытных и полузаводских установок, путем расчета):

3-
- по параметрам токсикометрии веществ, установленным в соответствии с методическими указаниями к постановке исследований обоснования санитарных стандартов вредных веществ в воздухе рабочей зоны (утв. Минздравом СССР, № 2163-80 от 04.04.80);
- с помощью интерполяции и экстраполяции в рядах соединений, изученных по химической структуре, физическим и химическим свойствам и характеру биологического действия.

Одновременно с устанавливаемыми ОБУВ должны разрабатываться методы контроля в воздухе рабочей зоны в соответствии с требованиями ГОСТ 12.1.005-76 "ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования".

Измерение установления ОБУВ производится в зависимости от степени изученности вещества и принадлежности к химической группе.

Для обоснования ОБУВ основной группы веществ необходимы значения D_{50}, C_{50} (в случае возможности установления), Lim_{ac} кумулятивной активности (установленной по методу Катана В.С. и Струковича В.В. или по методу Лима и соавторов), характере действия при попадании на кожу и свойства оболочки клетки, способности проникать через неповрежденные кожные покровы.

Когда вещество относится:
- к гомологическому ряду, представители которого имеют установленную в законодательном порядке величину ПДК для воздуха рабочей зоны;
- к изученному классу химических соединений с известным механизмом действия;
- имеют установленные в законодательном порядке санитарные нормативы в атмосфере населенных мест или в воде водоемов английского-общего водопользования по токсикологическому признаку вредности.
возможно обоснование ОЕУВ при определении не всех указанных выше параметров токсикиограмм (группы веществ, относящихся к изученным в токсикологическом плане классам химических соединений)

ОЕУВ не устанавливаются:
- для веществ, опасных в плане развития отдаленных и необратимых эффектов,
- для веществ, подлежащих широкому внедрению в практику.
Для установления значения ОЕУВ рекомендуется проводить расчеты по нескольким уравнениям.

Для вычисления среднего значения ОЕУВ ее величина представляется в виде среднего геометрического логарифма ОЕУВ, рассчитанных по отдельным уравнениям. Одновременно целесообразно провести расчеты ОЕУВ для ранее нормированных соединений, что позволяет подтвердить обоснованность прогнозов. В случае значительных расхождений величин ОЕУВ, рассчитанных по отдельным уравнениям или "выпаданий" полученной величины из ряда нормированных соединений исследуемого гомологического ряда, целесообразно привлечение дополнительных расчетов, основанных на определении порогов с помощью метода фракционного голодания или использования митохондриальной тест-системы. При выборе окончательного значения ОЕУВ следует учитывать все имеющиеся сведения о токсических свойствах изучаемого вещества (прогнозируемые величины, аналогия с ранее нормированными соединениями, особенности токсического действия).

Величины ОЕУВ (Cl150, Limac, Limch, Liml2) в уравнениях выражены в мг/м³, D150 - мг/кг.

Под "широким внедрением" понимается наличие контакта с контингентами работающих, количество которых составляет не менее 50 человек (Методические указания к постановке исследований для обоснования санитарных стандартов вредных веществ в воздухе рабочей зоны", утв. Минздравом СССР, № 2163-80).
При использовании других параметров токсикометрии, лимитирующих показателей, вида подопытных животных, путей введения веществ и т.д. дополнительная информация приведена рядом с рекомендуемыми уравнениями, либо указана непосредственно в самих уравнениях.

2. Определение ОБУВ основной группы веществ.

После проведения токсикологических исследований и установления ДЛ₅₀, СЛ₅₀, Lin_mac и других параметров токсикометрии рассчитываются величины ОБУВ, проводят по приведенным ниже уравнениям.

2.1. Для органических веществ, присутствующих в воздухе и паров, определение проводят по уравнениям (1-3)

\[\log_{10} \text{ОБУВ} = 0,5 \log_{10} \text{Lin}_{ac} + 0,49 \log_{10} \text{ДЛ}_{50} - 0,83 \] \hspace{1cm} (I)

\[\log_{10} \text{ОБУВ} = 0,59 \log_{10} \text{ДЛ}_{50} + 0,63 \log_{10} \text{Lin}_{ac} - 2,29 \] \hspace{1cm} (2)

\[\log_{10} \text{ОБУВ} = 0,39 \log_{10} \text{Lin}_{ac} + 0,41 \log_{10} \text{СЛ}_{50} + 0,36 \log_{10} \text{ДЛ}_{50} - 3,61 \] \hspace{1cm} (3)

2.2. Для органических веществ, Lin_{ac}, которых установлен поведенческая реакция (исследования проводят в соответствии с методическими указаниями по использованию поведенческих реакций животных в токсикологических исследованиях для целей гигиенического нормирования" (утв. Минздравом СССР № 2166-80), расчет величин ОБУВ проводят по уравнениям (4-5)

\[\log_{10} \text{ОБУВ} = 0,72 \log_{10} \text{Lin}_{ac} - 0,2 \log_{10} \text{ДЛ}_{50} - 0,36 \] \hspace{1cm} (4)

\[\log_{10} \text{ОБУВ} = 0,79 \log_{10} \text{Lin}_{ac} - 1,31 \] \hspace{1cm} (5)

2.3. Для гепатотоксичных веществ, Lin_{ac}, которых установлена комплексность показателей (бронхоспазмованная проба, проба выживаемости тианиурой кислоты, лиофилизированный обмен в почках, органические формы тиомочевины, состояние мембран гепатоцитов и т.д. ОБУВ проводят по уравнению:

\[\log_{10} \text{ОБУВ} = 0,8 \log_{10} \text{ДЛ}_{50} + 0,65 \log_{10} \text{Lin}_{ac} - 3,54 \] \hspace{1cm} (6)
2.4. Для веществ, обладающих неизбирательным раздражающим действием (Z ≤ I), расчет ОБУВ возможен по уравнению:

\[
\frac{b}{L} ОБУВ = 0.92 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i - 1.22
\] \hspace{0.5cm} (7)

\[
\frac{b}{L} ОБУВ = 0.99 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i - 0.756
\] \hspace{0.5cm} (8)

Определение \(\lim_{i=2}^{\infty} i \) для белых крыс и человека проводят в соответствии с методическими указаниями "К постановке исследования по изучению раздражающих свойств и обоснованных ПДК избирательно действующих раздражающих веществ в воздухе рабочей зоны" (утв. Минздравом СССР, № 2196-80).

2.5. Для органических веществ, присутствующих в воздухе в виде аэрозолей или их смеси в парах:

\[
\frac{b}{L} ОБУВ = 0.63 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i 50 - 1.75 + \frac{f}{f}
\] \hspace{0.5cm} (9)

где \(\frac{f}{f} \) по классификации кумулятивного действия Л.И. Медведя и соавт. для сверхкрупномерных веществ составляет 1,194, для высоко-крупномерных - 0,811, для среднекрупномерных - 0,786.

\[
\frac{b}{L} ОБУВ = 0.70 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i 50 - 0.94 + \frac{f}{f}
\] \hspace{0.5cm} (10)

где \(\frac{f}{f} \) для веществ 1-й группы составляет 1,48, для веществ 2-й группы - 0,753, для веществ 3-й группы - 0,658.

\[
\frac{b}{L} ОБУВ = 0.36 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i 50 + 0.47 \frac{\text{l}}{L} \lim_{i=2}^{\infty} i 50 - 1.62 + \frac{f}{f}
\] \hspace{0.5cm} (11)

где \(\frac{f}{f} \) для сверхкрупномерных веществ составляет 1,076, для высококрупномерных - 0,766, для среднекрупномерных - 0,672.

Поправки на выраженность кумулятивного действия целесообразно использовать в тех случаях, когда есть основание полагать, что величина коэффициента кумуляции оказывает влияние на значение ОБУВ (аналогия с ранее нормированными структурно близкими соединениями).

2.6. Расчет величины ОБУВ химических органических веществ различной структуры возможен с помощью специализированных моделей, основанных на кинетике и геометрической нелинейной зависимости величины ОБУВ от совокупности показателей (параметры токсикометрии, физико-химические показатели): - Υ -
расчеты могут производиться с неполным набором любого сочетания в модель показателей (полнота информации не менее 80%) при обязательном наличии данных о DL и CL и

Φ — сплайны-графики зависимости величин ОБУВ

B — весомость соответствующих параметров веществ от единицы.

Пример расчета величины ОБУВ бензола с помощью сплайнов.

на горизонтальных осях сплайнов откладывают параметры веществ.

<table>
<thead>
<tr>
<th>параметры</th>
<th>Φ_1</th>
<th>B_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 мг/м³</td>
<td>-0,28</td>
<td>0,15</td>
</tr>
<tr>
<td>15 мг/м³</td>
<td>-0,08</td>
<td>0,66</td>
</tr>
<tr>
<td>5 мг/м³</td>
<td>+0,08</td>
<td>0,10</td>
</tr>
<tr>
<td>1,5 г/см²</td>
<td>+0,12</td>
<td>0,05</td>
</tr>
<tr>
<td>0,68 г/см²</td>
<td>-0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>1,5 г/см²</td>
<td>+0,30</td>
<td>0,17</td>
</tr>
</tbody>
</table>

\[\sum \Phi = 0,02 \quad \sum B = 0,59 \]

С использованием полученных точек восстанавливают перпендикулярные до них и определяют значения непрерывных коэффициентов Φ на участках осях. Найденные коэффициенты Φ и их весомости B.
(указаны под каждой оплайн-моделью) подставляют в расчетную формулу:

\[
OBUB = 0.62 + \frac{\sum F_i}{\sum b_i} = 0.62 + \frac{0.28 - 0.08 + 0.08 + 0.12 - 0.06 - 0.30}{0.15 + 0.06 + 0.10 + 0.06 + 0.06 + 0.17} = 0.61 \cdot \frac{0.59}{0.62} = 0.62 + 0.03 = 0.65
\]

\[
0.65 \text{ OBUB} = 0.65 \quad \text{или} \quad OBUB = 10^{0.65} = 4.46 \text{ мг/м}^3
\]

Величина ПДК бензола, утвержденная в законодательном порядке 5 мг/м³. Расчет был проведен по 6 параметрам из II преду- странной модели (полнота информации 54,5%).

2.7. Для органических веществ, обладающих общетоксическим действием, \(OBUB \) рассчитывают по уравнению

\[
OBUB = \text{расчетный L}_{im_{ch}} \text{ коэф. запаса}
\]

а) расчет \(L_{im_{ch}} \) проводится по уравнениям

\[
\begin{align*}
L_{\text{lim}_{ch}}^{\text{a}} (\text{мг/м}^3) & = 0.62 \cdot \frac{L_{\text{CL}50}}{\text{CL}50} - 1.08 \quad (I4) \\
L_{\text{lim}_{ch}}^{\text{b}} (\text{мг/м}^3) & = 0.77 \cdot \frac{L_{\text{Lim}_{LC}}}{\text{Lim}_{LC}} - 0.56 \quad (I5)
\end{align*}
\]

при одновременно наличии омегатических и пороговых концен- траций для мышей и кроликов в качестве исходных следует брать величины для наиболее чувствительного вида животных.

Уравнения отражают общую зависимость между \(L_{im_{ch}} \) и параметрами острой токсичности.

Для отдельных групп соединений рекомендуется проводить расчет, используя следующие уравнения (I6–II):

- фосфорорганические вещества

\[
L_{\text{lim}_{ch}}^{\text{c}} = 0.95 \cdot \frac{L_{\text{Lim}_{LC}}}{\text{Lim}_{LC}} + 0.15 \quad (I6)
\]

- альдегиды и кетоны

\[
L_{\text{lim}_{ch}}^{\text{d}} = 6.19 + 1.25L_{\text{CL}50} \quad (I7)
\]

- Производные ацетилов и метоксилиновых кислот

\[
L_{\text{lim}_{ch}}^{\text{e}} = 2.50 + 2.41 \cdot \frac{L_{\text{Lim}_{LC}}}{\text{Lim}_{LC}} - 2.23 \quad (I9)
\]

- нитрил и шелочи, отщепляющие группу \(\text{N} \)

\[
L_{\text{lim}_{ch}}^{\text{f}} = 0.58 \cdot L_{\text{Lim}_{LC}} + 0.05 \quad (I2)
\]
6) Обоснование коэффициента запаса. Коэффициент запаса сглаживается из данных о потенциальной и реальной опасности веществ. Для характеристики потенциальной опасности использована величина КВИО, т.е. отношение максимально достижимой концентрации паров вещества в воздухе при 20°C и его CL 50(КВИО кл.) либо к Lim ac. КВИО ac. Биологическая активность вещества на разных уровнях воздействия оценивается величинами CL 50, Lim ac и Lim ch (по расчету), кумулятивная активность вещества оценивается величиной зон хронического и биологического действия. Межвидовые различия в чувствительности подопытных животных (не менее 4-х видов грызунов — мышей, морских свинок, крыс, кроликов) оцениваются величине КВР — отношению DL 50 для наиболее устойчивого вида животных к DL 50 для наиболее чувствительного при одном и том же пути введения в организм. Предусмотрено 2 варианта обоснования коэффициента запаса в зависимости от результатов эксперимента. При 1-ом варианте расчет коэффициента запаса проводится исходя из значений CL 50, Lim ac, КВИО кл., Z ch, КВР. Исходные данные приведены в таблице 1.

Согласно 2-му варианту расчет коэффициента запаса производится в случае недостижимости в стандартных условиях эксперимента величин CL 50. В этом случае коэффициент запаса обосновывается исходя из значений Lim ac, Lim ch, Z ch, КВИО ac, КВР (таблица 2). Для расчета коэффициента следует в каждом из 5 разделов, обозначенных римскими цифрами, таблиц 1 или 2 (в зависимости от результатов эксперимента) найти графу, относящуюся к данным опыта и соответствующую им балл. Найденные таким образом баллы необходимо сложить, полученной сумме в таблице 3 соответствует определенное значение коэффициента запаса.
Таблица № 1

Расчет коэффициента запаса по I-ому варианту

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>500</th>
<th>500-1000</th>
<th>1000-50000</th>
<th>>50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\text{CH}_{250} \text{mg/m}^3)</td>
<td>(\leq 500)</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>(\text{CH}_{10} \text{mg/m}^3)</td>
<td>(\leq 1)</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>(\text{Z}_{*} \text{mg/m}^3)</td>
<td>(> 1000)</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>(\text{KNO}_{3} \text{mg/m}^3)</td>
<td>(> 300)</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица № 2

Расчет коэффициента запаса по 2-ому варианту

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>10-100</th>
<th>100-1000</th>
<th>>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\text{CH}_{250} \text{mg/m}^3)</td>
<td>(\leq 10)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>(\text{CH}_{10} \text{mg/m}^3)</td>
<td>(\leq 1)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>(\text{Z}_{*} \text{mg/m}^3)</td>
<td>(> 10)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>(\text{KNO}_{3} \text{mg/m}^3)</td>
<td>(> 10000)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>баллы</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица № 3

Перечисление коэффициента запаса в зависимости от суммы баллов

<table>
<thead>
<tr>
<th>Сумма баллов</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
<th>32</th>
<th>34-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коэффициент запаса</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

- 12 -
Расчетная величина \(\lim \) может быть аппроксимирована в краткосрочном (30 дней) эксперименте, программа которого предусматривает проведение исследований на 8 группах белых крыс (всего не менее 68 животных). Исследование влияния вещества на организм проводят на 13-15 день, на 20-25 день и 28-30 день воздействия. Применяются следующие методы исследования:

а) суммационно-пороговый показатель с функциональной пробой - анодизацией головного мозга - для исследования функционального состояния центральной нервной системы; исследование поведенческих реакций.

б) изучение соображений свойств тканей основных органов и желез методом витального окрашивания.

Пороговый эффект характеризуется напряженными защитными механизмами при формировании начальных фаз интоксикации. На это указывает: 1) вливание наличия торможения в центральной нервной системе, появляющегося только при применении пробы - анодизации головного мозга, торможение поведенческих реакций; 2) обнаружение скрытого выраженного снижения, а затем и увеличения соображений способности тканей ряда желез внутренней секреции (гипофиза, щитовидной железы, надпочечников), а также отдельных внутренних органов. (С.М. Павленко, В.А. Гусева).

2.8. О.Б.В. неорганических газов и паров рассчитывают по уравнениям (22-23)

\[
\text{O}_{2}\text{г.ц.в.} = \text{Cl}_{1,50} (\text{мм/л}) + 0,4 + \frac{2}{3} M, \text{или в упрощенном виде (22)}
\]

\[
\text{OБУВ} = 2,52 \cdot \text{Cl}_{1,50} (\text{мг/л}) \quad (23)
\]

2.9. ОБУВ для аэрозолей окислов и других малорастворимых соединений металлов рассчитывают по уравнению для растворимых соединений металлов - по уравнению (24-27)
ОБУВ = 0,85 \left[\frac{\text{lDL} 50}{\text{мА/кг}} \right] - 3,0 + \frac{1}{f} M - \frac{1}{f} N \quad (24)

ОБУВ мг/м³ = 0,664 \left[\frac{\text{lDL} 50}{\text{мГ/кг}} \right] - 1,59 \quad (25)

de: \text{lDL} 50 - смолетальная доза для 50% мышей при внутрибрюшинном введении в последующем наблюдениям в течение недели, выраженная в миллиатомах на килограмм массы тела (мА/кг);

N - число атомов металла в молекуле вещества

Расчет ОБУВ растворимых солей металлов по \(L_{ \text{имм} } \):

\[
\text{ОБУВ мг/м³} = 0,7 \left(L_{ \text{имм} } \right) \text{мГ/кг} - 0,85 \quad (26)
\]

Расчет ОБУВ растворимых соединений металлов по ДЛ 50 и L_{имм} при совместном их использовании:

\[
\text{ОБУВ мг/м³} = 0,29 \left(\text{ДЛ} 50 \right) + 0,48 \left(L_{ \text{имм} } \right) - 1,24 \quad (27)
\]

2.10. Расчет ОБУВ с помощью митохондриальную тест-системы.

Метод основан на изучении влияния веществ на процесс дыхания в изолированных митохондриях печени крыс.

Расчет ОБУВ проводится на основе использования величины

ДЛ 50 - концентрации, уменьшающей дыхание изолированных митохондрий на 50%.

Величина ДЛ 50 может быть получена из литературы, либо в соответствии с "Методическими рекомендациями по экспрессному определению параметров токсикометрии новых химических агентов и изолированных митохондриях" (утв. Минздравом РСФСР 04.05.77).

2.10.1. Расчет величины ДЛ 50 при введении в желудок.

Расчет величины ДЛ 50 осуществляется по уравнению

\[
\text{ДЛ 50 мсм/кг } \cdot \text{ мг} = 1,30 + 0,55 \left(\frac{1}{d} \right) \text{СI}_{50} \quad (28)
\]

Средняя ошибка расчетной величины ДЛ 50 составляет 1,72-

% раза, или 1,57±0,2 раза по абсолютной величине. Пример расчета: экспериментально найденная величина СI 50 средней ошибки 2,4-диоксихлорнитрила составляет 5,10^{-3} мг/кг. I/СI 50 = 0,2; I/СI 50 = 0,2; I/СI 50 = 2,3. Подставляя получившуюся величину в уравнение (28) имеем: I/ДЛ 50 = 1,30 + 0,55*2,3 = 3,0.
\[I_{DL_{50}} = 2,565; I_{DL_{50}} = 0,68 \times 10^2; DL_{50} = 0,272 \times 10^{-2} \text{моль/л} \]

Исходя из молекулярной массы 2,4-Д, равной 243, находим расчетную \(DL_{50} \) в весовых единицах, равную 660 мг/кг (крысы).

2.10.2. Расчет величины \(CL_{50} \) (однократная 2-х часовая ингаляционная загрузка). Расчет осуществляется по уравнению:

\[\frac{I}{CL_{50}} = 3,05 + 0,663 \frac{I}{CL_{50}} \] \((29) \)

Средняя: ошибка расчетной величины \(CL_{50} \) составляет \(2,92 \pm 0,48 \).

Пример расчета: экспериментально найденная величина \(I_{50} \) для \(SO_2 \) (в виде натриевой соля \(Na_2SO_3 \)) составляет \(2,4 \times 10^{-2} \text{м}, \)

Отсюда \(I_{/0.50} = 4,16 \times 10^1 \), а \(\frac{I}{CL_{50}} = 1,62 \).

Подставляя эту величину в уравнение \((29) \) найдем

\[\frac{I}{CL_{50}} = 3,05 + 0,663 \times 1,62 = 4,12 \]

Если \(\frac{I}{CL_{50}} = 4,12 \), то \(I_{/CL_{50}} = 1,35 \times 10^{-4} \), а \(CL_{50} = 7,5 \times 10^{-5} \text{м}. \)

Исходя из молекулярного веса \(SO_2 \), равного 64, переводим \(CL_{50} \) в принятую в токсикологии высокую величину, которая составляет \(4,8 \text{ мг/л}. \) Согласно литературным данным, величина \(CL_{50} \) для \(SO_2 \) варьирует от 2,6 до 6 мг/л.

2.10.3. Расчет порога однократного действия при 4-х часовой ингаляции \((Li_{max}) \) осуществляется по уравнению \((30) \):

\[\frac{I}{Lim_{max}} (\text{моль/л}) = 4,15 + 0,663 \frac{I}{CL_{50}} \] \((30) \)

Средняя погрешность расчета составляет \(3,13 \pm 1,13 \).

Примечание. В связи с тем, что экспериментально определяемые величины \(Lim_{max} \) сильно варьируют в зависимости от использования методов и критериев определения порога, в расчетах этого токсикометрического параметра следует относиться с известной осторожностью.

2.10.4. Расчет величины ОБУВ для воздуха рабочей зоны проводится согласно уравнению \((31) \):

\[\frac{I}{OBUV} (\text{моль}^{-1} \text{м}^3) = 6,64 + 0,766 \frac{I}{CL_{50}} \] \((31) \)
Средняя погрешность расчета составляет 0,5±1,30
Пример расчета величины ОБУВ.

С. i50 для п-хлортолуола (p-ХТ) равна 0,126 М

\(\frac{1}{I/C_{i50}} = 0,359 \); \(\frac{1}{I/ОBU} = 6,04 \pm 0,766 \). 0,899 = 6,73;

1/ОБУВ = 5,359.10^-6; ОБУВ = 1,86.10^-7 моль/л, или, с учетом молекулярного веса п-ХТ (126,6), 1,86.10^-7 X 126,6 = 2,36.10^-6 г/л.

В принятой для гигиенического нормирования системе единиц (мг/м³) получаем: 2,36.10^-5.10^-6 = 23,6 мг/м³. Утвержденная в законодательном порядке величина ПДК п-ХТ для воздуха рабочей зоны равна 10 мг/м³ (с учетом действия вещества на репродуктивную функцию).

2.11. Обоснование ОБУВ веществ на основе порога неспецифиче-
ской реакции организма методом фракционного голодания.

Для расчета величины ОБУВ необходимо нахождение следующих
параметров токсикометрии: ДЛ 50 исследуемого вещества при одно-
кратном внутрибрюшинном введении (ДЛ 50 в/бр), СЛ 50 (мг/л), порога по методу фракционного голодания (лим и длп), в двухкратных
шагах от ДЛ 50 в/бр.

Соотношение между выражением доз в шагах и дозах от ДЛ 50
подчиняется формуле 2^-N, где N – порядковый номер шага; так,
доза 2 шага соответствует 1/4 от ДЛ 50 (2^-2), доза 10 шагов –
1/1024 ДЛ 50 (2^-10) – и т.д. при определении величин (лим и длп), а также порога по иным показателям, испытываются дозы, составляю
щие целое число двухкратных шагов от ДЛ 50. Вещества растворяются в воде (в случаях плохой растворимости – с помощью эмульгиа-
тора ОП-7 или любого другого, нетоксичного которого показана). При этом варьируется лишь концентрация вещества в растворе, но
не количество раствора: оно всегда составляет 0,01 мл на 1 г масс.
соны тела мыши.

Исследование действия веществ методом фракционного голодан-
ния осуществляется следующим образом.
Не менее, чем за неделю до опыта, мыши-самцы двух-пятимесячного возраста расселяются по 60-65 особей в каждую ванночку (клетку). В день опыта (утром) из них формируется 5 экспериментальных групп, выравненных по средней массе тела, животные маркируются групповыми метками (внутри каждой метки одинаковые) и затравливаются внутривенно (2, 3 и 4-я группы, I и 5-я группа - контрольная). После этого они на 6 часов лишаются воды и пищи (первое голодание), затем кормятся в течение 3-х часов и снова лишаются пищи на 14 часов (второе голодание). В ходе голоданий - насыщений мыши периодически взвешиваются. Режим взвешивания: перед первым голоданием; после первого голодания; через 1, 2 и 3 часа после начала первого насыщения; после второго голодания; через 1, 2, 4 и 6 часов после начала второго насыщения (всего 10 взвешиваний). Взвешивание мышей - групповыми, по 10 животных вместе, с точностью до 0,5 г. Перед каждым взвешиванием мыши сортируются в соответствии с их групповой приадлежностью, после взвешивания снова объединяются. По итогам эксперимента определяется интегральный динамический показатель (ИДП): сумма модулей отличие в прибавке массы тела сравниваемых групп по всем интервалам между взвешиваниями в единицах, соответствующая 0,25 г. Сравниваются две контрольные группы между собой и каждая подопытная - со средним результатом для двух контрольных. Серии, в которых ИДП при сравнении двух контролей между собой оказывается больше 40, исключаются из рассмотрения (выбраковываются). Для прочих серий показателем наличия токсического эффекта считается ИДП > 40, что соответствует вероятности случайного результата менее 0,01 (по данным "холостых" серий). На основании испытания нескольких доз исследуемого вещества определяется минимальная доза, вызывающая токсический эффект (L10, ИДП). Правила определения L10, ИДП:

- 17 -
а) Первоначально испытываются четные шаги от ДЛ 50. Если при этом минимальная эффективная доза оказывается от 4 до 10 шагов исключительно, то порог уточняется до двухкратного шага. Во всех остальных случаях достаточно определение порога с точностью до четырехкратного шага.

б) Порог считается найденным, когда две большие дозы эффективны, т.е. дают превышение граничной величины ИДП, а три - меньше - неэффективны.

в) В случае получения данных, противоречащих постулату о прямой зависимости наличия или отсутствия эффекта от дозы, варианты воздействия, давшие парадоксальные результаты, проверяются джеды. Таким образом, по каждому из таких вариантов накапливаются три результата. Доза оценивается как эффективная, если в двух случаях из трех получено превышение граничной величины ИДП, и как неэффективная - если в двух случаях из трех граничная величина не достигается.

g) Доза больше 4 шагов от ДЛ 50 можно не испытывать. Если эта доза окажется минимальной эффективной или неэффективной, порог квалифицируется как "менее 5 шагов".

После нахождения Лимид (в двухкратных шагах от ДЛ 50 в/6р) необходимо по табл. 4 определить значение D - дистанции от СЦ 50 до ОБУВ (тоже в двухкратных шагах). Меньший расчет гигиенического норматива производится по формуле: ОБУВ = \(\frac{\text{СЦ 50}}{2^\text{D}} \) (32)

Таблица 5

<table>
<thead>
<tr>
<th>Лимидн</th>
<th>Д</th>
<th>Лимидн</th>
<th>Д</th>
<th>Лимидн</th>
<th>Д</th>
<th>Лимидн</th>
<th>Д</th>
<th>Лимидн</th>
<th>Д</th>
</tr>
</thead>
<tbody>
<tr>
<td>менее</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>20</td>
<td>16</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>17</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>24</td>
<td>18</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>18</td>
<td>15</td>
<td>26</td>
<td>19</td>
<td>34</td>
<td>23</td>
</tr>
</tbody>
</table>
Пример. Пусть для какого-либо вещества CL 50 составляет 3 мг/л (3000 мг/м³), а ЛИМ инд. (в шагах от ДЛ 50) равен 16. По табл. 4 находим, что данной величине ЛИМ инд. соответствует дистанция от CL 50 до ОБУВ (Д), равная 14 шагам. Тогда ОБУВ будет равен \(\frac{3000 \text{ мг/м}^3 \times 2^{-14}}{18354} \text{ мг/м}^3 = 0,1^5 \text{ мг/м}^3 \) (с округлением до сотых).

Экспериментальное определение CL 50 может быть заменено расчетом этого параметра по формуле: CL 50 (в мг/л) = К : ДЛ 50 в/бр (г/кг).

Для нахождения величины коэффициента K осуществляют следующий опыт. Раствор вещества, соответствующий ДЛ 50 в/бр разводят в 4 раза и с помощью шприца кводят шести мышам внутривенно (в ретробдитальный вакуозный синус). Если гибели мышей не наблюдается, или гибнет одна мышь из шести, коэффициент K принимают равным 15. В противном случае (при гибели большего числа мышей), вещество разводят еще в 2 раза (теперь разведение соответствует 1/6 ДЛ 50 в/бр.) и опыт повторяют (на другие 6-й мышей). Если после этого гибели не наблюдается, или гибнет менее пяти мышей в 6-ти то при нимают величину K, равную 5. Если от второй дозы погибает все животные (или 5 или 6), то принимают величину K, равную 0,8. Альтернативный расчет гигиенического норматива на основании исчисленной величин CL 50 не отличается от такового при использовании CL 50 экспериментальной.

Ограничением способа является неприменимость его для нормирования соединений, в токсическом эффекте которых лимитирующим фактором является прием поражение левочной ткани. В случае, когда есть основания подозревать разность кожного пути поступления яда, он должен исследоваться дополнительно традиционными методами.
3. Определение ОБУВ веществ, относящихся к изученным в токсикологическом плане классам или группам химических соединений.

3.1. Для органических соединений, находящихся в воздухе в виде паров либо смеси паров и аэрозолей, рекомендуется следующие уравнения.

<table>
<thead>
<tr>
<th>Класс или группа соединений</th>
<th>Уравнение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углеводороды предельные алифатические</td>
<td>ОБУВ = 0,0001 . CL 50 (33)</td>
</tr>
<tr>
<td>Углеводороды с непредельной связью в открытой цепи</td>
<td>ОБУВ = 0,0004 . CL 50 (34)</td>
</tr>
<tr>
<td>Хлоруглеводороды предельные алифатические</td>
<td>ОБУВ = 0,0005 . CL 50 (35)</td>
</tr>
<tr>
<td>Хлоруглеводороды непредельные</td>
<td>ОБУВ = 0,0022 . CL 50 (36)</td>
</tr>
<tr>
<td>Хлорбензолы, хлороксилолы хлорнафталины</td>
<td>ОБУВ = 0,0025 . CL 50 (37)</td>
</tr>
<tr>
<td>Бромуглеводороды без непредельных связей в открытой цепи</td>
<td>ОБУВ = 0,00025 CL 50 (38)</td>
</tr>
<tr>
<td>Спирты предельные алифатические с атомами F или без них, фенолы</td>
<td>ОБУВ = 0,286 . CL 50 mг/л (39)</td>
</tr>
<tr>
<td>Спирты непредельные алифатические с одной двойной связью</td>
<td>ОБУВ = 0,286 . CL 50 mг/л (40)</td>
</tr>
<tr>
<td>То же с двумя двойными или одной тройной связью</td>
<td>ОБУВ = 0,286 . CL 50 mг/л (41)</td>
</tr>
<tr>
<td>Простые эфиры предельные алифатические</td>
<td>ОБУВ = 0,001 + CL 50 (42)</td>
</tr>
<tr>
<td>Простые эфиры алифатические непредельные</td>
<td>ОБУВ = 0,001 + CL 50 (43)</td>
</tr>
<tr>
<td>Органические кислоты и их ангириды</td>
<td>ОБУВ = 0,001 . CL 50 (44)</td>
</tr>
<tr>
<td>Фторированные органические кислоты</td>
<td>ОБУВ = от 0,001 до 0,005 CL 50 (45)</td>
</tr>
</tbody>
</table>
Хлорангидриды органических кислот \(\text{ОБУВ} = 0.0025 \cdot \text{CL}_{50} \) (46)
Сложные эфиры (без фосфора) \(\text{ОБУВ} = 0.001 \cdot \text{CL}_{50} \) (47)
Ацетаты, акрилаты \(\text{ОБУВ} = 0.0025 \cdot \text{CL}_{50} \) (48)
Хлорированные сложные эфиры \(\text{ОБУВ} = 0.0005 \cdot \text{CL}_{50} \) (49)
Алдегиды
Кетоны предельные алифатические \(\text{ОБУВ} = 0.008 \cdot \text{CL}_{50} \) (51)
Хлорациетони
Кетоны непредельные алифатические \(\text{ОБУВ} = 0.00001 \cdot \text{CL}_{50} \) до \(0.0002 \cdot \text{CL}_{50} \) (53)
Гетероциклические соединения
Нитросоединения \(\text{ОБУВ} = 0.0005 \cdot \text{CL}_{50} \) (54)
Нитросоединения алифатические с 3 и 4 группами \(\text{ОБУВ} = 0.002 \cdot \text{CL}_{50} \) (55)
\(\text{ОБУВ} = 0.00063 \cdot \text{CL}_{50} \) (56)
Амины разнообразные
Нитрилы, цианиды, изоционанаты \(\text{ОБУВ} = 0.78 \cdot \text{CL}_{50} \text{мг/л} - 0.67 + 0.6 \cdot \text{M} \) (58)
\(\text{Нитро- и амивоссоединения ряда бензола} \quad \text{ОБУВ} = 0.016 \cdot \text{Li}_{50} + 0.27 \) (59)
\(\int \text{ОБУВ} = 0.67 \cdot \text{Li}_{50} - 2.35 \) (60)

Расчет ОБУВ органических соединений, находящихся в воздухе в виде смеси паров и аэрозоля, производят по уравнениям (63-69). Расчет ОБУВ проводят исходя из величины ДЛ 50 при введении в желудок.

Для класса углеводородов \(\text{ОБУВ} = 0.016 \cdot \text{DL}_{50} \) (63)
- " галоидуглеводородов \(\text{ОБУВ} = 0.001 \cdot \text{DL}_{50} \) (64)
- " спиртов \(\text{ОБУВ} = 0.0025 \cdot \text{DL}_{50} \) (65)
- " аминов \(\text{ОБУВ} = 0.002 \cdot \text{DL}_{50} \) (66)
- " нитросоединений \(\text{ОБУВ} = 0.005 \cdot \text{DL}_{50} \) (67)
- " гетероцикллических соединений \(\text{ОБУВ} = 0.002 \cdot \text{DL}_{50} \) (68)
- " сложных эфиров \(\text{ОБУВ} = 0.002 \cdot \text{DL}_{50} \) (69)

Для этой же группы соединений, находящихся в воздухе в виде аэрозоля, расчет ОБУВ рекомендуется по уравнениям (61-62)
\(\int \text{ОБУВ} = 0.92 \cdot \text{Li}_{50} - 1.65 \) (61)
\(\int \text{ОБУВ} = 0.66 \cdot \text{DL}_{50} - 2.12 \) (62)

- 21 -
3.2. Для расчета ОБУВ членов гомологических рядов, в которых уже имеются нормированные гомологии, используется зависимость

\[
\text{ОБУВ} = \frac{M}{\sum \ell_i} \geq \ell_i \quad (70)
\]

где \(\sum \ell_i\) — сумма величин биологических активностей химических связей атомов в молекуле нормируемого вещества; значения \(\ell_i\) для разных гомологических рядов соединений, вычисленные как средние величины из нормированных гомологов ряда, приведены в таблице.

Значение биологической активности химических связей нормированных соединений различных гомологических рядов.

<table>
<thead>
<tr>
<th>Химическая связь</th>
<th>(\ell_i (\text{пдм}))</th>
<th>Ряд соединений</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}-\text{H})</td>
<td>0,0</td>
<td>Предельные, непредельные, циклические и нециклические углеводороды</td>
</tr>
<tr>
<td>(\text{C}-\text{C})</td>
<td>6,5</td>
<td>Предельные углеводороды ряда метана</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>459,0</td>
<td>Непредельные углеводороды ряда этилена</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>842,0</td>
<td>Диэтиленовые углеводороды</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>1722,0</td>
<td>Непредельные углеводороды ряда апетилена</td>
</tr>
<tr>
<td>(\text{C}-\text{C})</td>
<td>243,0</td>
<td>Предельные циклические углеводороды (циклопарафины)</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>5116,0</td>
<td>Непредельные циклические углеводороды</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>4957,0</td>
<td>Незамещенные ароматические углеводороды (бензол)</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>504,0</td>
<td>Замещенные ароматические углеводороды ряда бензола</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>1073,0</td>
<td>Ароматические углеводороды с конденсированными кольцами: два кольца (ряд нафталина)</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>31503,0</td>
<td>Трех кольцами (ряд фенантрена)</td>
</tr>
<tr>
<td>(\text{C}=\text{C})</td>
<td>352,0</td>
<td>Предельные кетона жирного ряда</td>
</tr>
<tr>
<td>Код</td>
<td>2</td>
<td>Название</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>>C=O</td>
<td>97647,0</td>
<td>Непредельные кетоны жирного ряда</td>
</tr>
<tr>
<td>>C=O</td>
<td>8311,0</td>
<td>Циклические кетоны</td>
</tr>
<tr>
<td>>C=O</td>
<td>21721,0</td>
<td>Ароматические кетоны</td>
</tr>
<tr>
<td>>C=O</td>
<td>933708,0</td>
<td>Хиноны</td>
</tr>
<tr>
<td>>C=O</td>
<td>15625,0</td>
<td>Предельные альдегиды жирного и ароматического рядов</td>
</tr>
<tr>
<td>>C=O</td>
<td>209767,0</td>
<td>Непредельные альдегиды жирного ряда</td>
</tr>
<tr>
<td>C=0-</td>
<td>303,0</td>
<td>Предельные эфиры жирного ряда</td>
</tr>
<tr>
<td>C=0-</td>
<td>2260,1</td>
<td>Непредельные эфиры жирного ряда</td>
</tr>
<tr>
<td>C=0-</td>
<td>7647,0</td>
<td>Эфиры алициклического и ароматического рядов</td>
</tr>
<tr>
<td>C=0-</td>
<td>976,0</td>
<td>Ацетали</td>
</tr>
<tr>
<td>C=0-</td>
<td>25526,0</td>
<td>Органические трехчленные окис</td>
</tr>
<tr>
<td>C=0-</td>
<td>49303,0</td>
<td>Ненасыщенные (пятичленные) гетероциклы с одним атомом кислорода (ряд фурана)</td>
</tr>
<tr>
<td>C=0-</td>
<td>307,0</td>
<td>Гетероциклы (пятичленные) с двумя атомами кислорода</td>
</tr>
<tr>
<td>C=C-</td>
<td>2425,0</td>
<td>Шестичленные гетероциклы с двумя атомами кислорода</td>
</tr>
<tr>
<td>C=C-</td>
<td>10073,0</td>
<td>Предельные одноатомные силиры жирного ряда</td>
</tr>
<tr>
<td>C=C-</td>
<td>231862,0</td>
<td>Одноатомные фенолы</td>
</tr>
<tr>
<td>C=C-</td>
<td>2522,0</td>
<td>Простые эфиры этилен- и диэтиленгликоля</td>
</tr>
<tr>
<td>O-H</td>
<td>141128,0</td>
<td>Органические перегонки</td>
</tr>
<tr>
<td>O-H</td>
<td>-6943,0</td>
<td>Предельные монокарбоновые кислоты жирного ряда</td>
</tr>
<tr>
<td>O-H</td>
<td>-200994,0</td>
<td>Непредельные монокарбоновые кислоты жирного ряда</td>
</tr>
<tr>
<td>O-H</td>
<td>1183129,0</td>
<td>Моно- и диоксоновые кислоты ароматического ряда</td>
</tr>
<tr>
<td>C=0-</td>
<td>68158,0</td>
<td>Ангириды предельных кислот жирного ряда</td>
</tr>
<tr>
<td>C=C-</td>
<td>65,5</td>
<td>Сложные эфиры предельных жирных кислот</td>
</tr>
</tbody>
</table>
Сложные эфиры непределных эфир-ров и (или) кислот
Сложные эфиры ароматических кислот (фталаты)
Окислы азота
То же
Мононитро парафины
Три- и тетранитрометан
Циклические мононитросоединения
Ароматические мононитросоединения
Ароматические ди- и тринитросоединения
Ароматические моно- и динитроспирты
Аммиак
Низшие (до C₆) предельные первичные алифатические амины
Быстрые (C₇-C₂₀) предельные и непределственные алифатические амины
Вторичные алифатические амины и диамины
Предельные третичные алифатические аммины
Циклические амины
Незамещенные первичные ароматические амины (аминки)
Замещенные (первичные, вторичные и третичные) ароматические амины и диамины
Ароматические эфиры
Алифатические аминокислоты
Алифатические аминоспирты
Гетероциклические азотсодержащие соединения (гонелоги этиленамины)
Ароматические шестичлененые азотсодержащие предельные соединения с одним гетероатомом азота (ряд пирдинов).

Ароматические шестичлененые азотсодержащие непредельные соединения с одним гетероатомом азота.

Гетероциклических соединений с одним атомом азота и кислорода (алкилпроизводные морфолина).

Гидразин.

Гетероциклических (пятичленные) непредельные соединения с одним атомом серы.

Сероводород.

Меркаптаны.

Предельные цианиды.

Непредельные цианиды.

Ароматические цианиды.

Пример: Расчет ОБУВ валериановой кислоты:

\[
\begin{align*}
\text{H} & \text{H} \text{H} \text{H} \\
\text{H} & \text{C} \text{-} \text{C} \text{-} \text{C} \text{-} \text{C} & \text{-} \text{O} & \text{-} \text{H} \\
\text{H} \text{H} & \text{H} \text{H} \\
\text{C} & \text{-} \text{C} \text{-} \text{N} \\
\text{C} & \text{-} \text{N} \\
\text{C} & \text{-} \text{N} \\
\end{align*}
\]

\[
\begin{align*}
\Sigma E_i &= 9 + \ell \left(> \text{C} - \text{H} \right) + 4 \cdot \ell \left(> \text{C} - \text{C} \right) + \ell \left(> \text{C} = \text{O} \right) + \ell \left(> \text{C} - 0 \right) + \ell \left(> \text{C} - \text{H} \right) + 0,8 + 4 \cdot 51,4 \cdot 1 \cdot 1 \cdot 1 \cdot (-12517,8 + 1 \cdot 21907,7 + 1 \cdot 850,7,7 + 1 \cdot 8507,9 \cdot 16150 \cdot 6 \\
\text{ОБУВ} &= \frac{102,9}{16150,0} \cdot 1000 = 5,6 \text{ мг/м}^3.
\end{align*}
\]

Утвержденная в закоподательном порядке ПДК валериановой кислоты составляет 5 мг/м³.

3.3. Для пестиницков рекомендуется проводить расчеты по уравнениям (71-91).

Исходными показателями эти уравнения предусматривают DL 50 при введении в желудок, CL 50, для мышей, крыс (экспозиция соответственно 2 и 4 часа), DL* 50 при нанесении на кожу и коэффициент кумуляции (\(M_i\)).
Для пестицидов всех групп расчет ОБУВ проводит по уравнениям:

\[O_{\text{БУВ}} = 0,58 L_{\text{ДЛ}} 50(мг/кг) - 1,96 \]
(71)

\[O_{\text{БУВ}} = 0,47 L_{\text{ДЛ}} 50(мг/кг) + 0,11 L_{\text{ДЛ}} 50x(мг/кг) - 2,02 \]
(72)

\[O_{\text{БУВ}} = 0,52 L_{\text{ДЛ}} 50(мг/кг) + 0,04 L_{\text{ДЛ}} 50x(мг/кг) - 2,13 \]
(73)

\[O_{\text{БУВ}} = 0,46 L_{\text{ДЛ}} 50(мг/кг) + 0,06 L_{\text{ДЛ}} 50x(мг/кг) + 0,04 L_{\text{ДЛ}} 50x2 \]
(74)

Расчет ОБУВ для фосфорорганических пестицидов по уравнениям:

\[O_{\text{БУВ}} = 0,52 L_{\text{ДЛ}} 50(мг/кг) - 1,6 \]
(75)

\[O_{\text{БУВ}} = 0,33 L_{\text{ДЛ}} 50(мг/кг) + 0,25 L_{\text{ДЛ}} 50x(мг/кг) - 1,93 \]
(76)

\[O_{\text{БУВ}} = 0,46 L_{\text{ДЛ}} 50(мг/кг) + 0,04 L_{\text{ДЛ}} 50x - 1,89 \]
(77)

\[O_{\text{БУВ}} = 0,20 L_{\text{ДЛ}} 50(мг/кг) + 0,24 L_{\text{ДЛ}} 50x(мг/кг) + 0,035 L_{\text{ДЛ}} 50x2 - 2,09 \]
(78)

Для высокотоксичных и высоколетучих фосфорорганических пестицидов рекомендуются уравнения:

\[O_{\text{БУВ}} = 0,47 L_{\text{СЛ}} 50 - 1,36 \]
(79)

\[O_{\text{БУВ}} = 0,38 L_{\text{СЛ}} 50 + 0,35 L_{\text{ДЛ}} 50x - 1,47 \]
(80)

\[O_{\text{БУВ}} = 0,74 L_{\text{Лимаe}} - 0,74 \]
(81)

\[O_{\text{БУВ}} = 0,15 L_{\text{Лимаe}} + 0,79 L_{\text{Лимaн}} - 0,69 \]
(82)

Лимаe рассчитывается по уравнению:

\[L_{\text{Лимаe}} = 0,62 L_{\text{Лимaн}} + 0,79 L_{\text{Лимaн}} - 0,69 \]
(83)

Расчет ОБУВ для хлорорганических пестицидов по уравнениям:

\[O_{\text{БУВ}} = 0,97 L_{\text{ДЛ}} 50(мг/кг) - 3,06 \]
(84)

\[O_{\text{БУВ}} = 0,74 L_{\text{ДЛ}} 50(мг/кг) + 0,22 L_{\text{ДЛ}} 50x(мг/кг) - 3,13 \]
(85)

\[O_{\text{БУВ}} = 0,5 L_{\text{ДЛ}} 50(мг/кг) + 0,06 L_{\text{ДЛ}} 50x - 3,21 \]
(86)

\[O_{\text{БУВ}} = 0,77 L_{\text{ДЛ}} 50(мг/кг) + 0,12 L_{\text{ДЛ}} 50x(мг/кг) + 0,06 L_{\text{ДЛ}} 50x2 - 3,25 \]
(87)

Для пестицидов - производных карбаминоной, тио- и...
дитиокарбаминовой кислот - по уравнениям:

\[\text{ОБУБ} = 0,2 \, \text{Л50 (мг/кг)} - 0,61 \] \quad (88)

\[\text{ОБУБ} = 0,01 \, \text{Л50 (мг/кг)} + 0,28 \, \text{Л50² (мг/кг)} - 1,18 \] \quad (89)

\[\text{ОБУБ} = 0,14 \, \text{Л50 (мг/кг)} + 0,02 \, \text{Л50} - 0,41 \] \quad (90)

\[\text{ОБУБ} = 0,12 \, \text{Л50 (мг/кг)} + 0,23 \, \text{Л50² (мг/кг)} + 0,013 \, \text{Л50} + 0,013 \] \quad (91)

3.4. Определение ОБУБ продуктов микробиологического синтеза, обладающих сенсибилизирующими свойствами, проводится по уравнению:

\[\text{ОБУБ} = 0,3 \, \text{Л50} + 0,9 \, \text{Лимак} - 1,66 \text{ мг/м³} \] \quad (92)

Определение \text{Лимак} продуктов микробиологического синтеза проводится в соответствии с "Методическими указаниями к постановке исследований для обоснования ЦНК гидролитических ферментных препаратов микробиологического синтеза в воздухе рабочей зоны" (№ 2339-81).

3.5. Определение ОБУБ по токсикологическим характеристикам.

Для ксенобиотиков, продуктами биотрансформации которых являются естественные метаболиты организма, за ОБУБ принимается такая концентрация вещества в воздухе при однократном его воздействии, при которой количество метаболита в моче и следующим суткам достигает уровня естественного содержания.

Для расчета указанной величины необходимо определять содержание метаболитов в моче животных на разных уровнях воздействия (не менее 3 уровней), а затем по уравнению регрессии вычислить такую концентрацию вещества в воздухе, при которой содержание метаболитов достигает уровня естественного фона. Расчет возможен в графическом путем: построить прямую, отражающую зависимость содержания метаболитов в моче от концентрации вещества в воздухе, и продолжить ее до пересечения с уровнем естественного фона. Перпендикуляр, опущенный на точки пересечения указанных прямых, будет соот-
отвествовать величине ОБУВ (Г.Г.Лвилова и соавторы).

3.6. Определение ОБУВ по электронным характеристикам молекул.

Определение ОБУВ ярко выраженных толуола, содержащих только атомы галогенов в метиленной группе и бензольном кольце, проводить по величине индекса прочности донорно-акцепторной связи при координации молекул этой группы веществ через атомы галогена проводится по уравнениям (93-94)

а) для вещества обладающего общетермическим действием

\[\beta_1 \frac{F_1}{\beta} - 2.4 + 0.1 \omega \left(\frac{F_2 + A}{\beta^2} \right) \]

(93)

б) для вещества, обладающего раздражительным действием

\[\beta_1 \frac{F_1}{\beta} = -0.2 + 0.127 \left(\frac{F_2 + A}{\beta^2} \right) \]

(94)

Индикатор прочности донорно-акцепторной связи вычисляется по формуле:

\[E_{DA} = \frac{\sum_{i=1}^{\sigma_{CC}} \sum_{j=1}^{\sigma_{CC}} C_{ij}^{2,2} \left(\epsilon_{2} - \epsilon_{i} \right)}{\beta^2} \]

\(C_{ij} \) — энергия занятых электронами спин-орбиталяй;

\(\epsilon_{2} \) — энергия акцепторного уровня рецептора. Нечтотр не конкретизируется для \(\epsilon_{1} \) принимается значение \(B_{0} \);

\(C_{ij} \) — коэффициенты разложения молекулярных орбит по атомным орбиталям

\(\beta \) — резонансный интеграл для взаимодействия между молекулярной орбиталью рецептора и \(\nu \) — атомной орбиталью галогена.

Суммирование в правой части формулы проводится по занятых орбиталей \(\nu \), изучаемой молекулы и по атомным орбиталям галогена.

Расчет электронного строения молекул проводится по методу электронного преобразования дифференциальных перекрытий (ПУП/2). Для прослеживания ОБУВ галогенов соединений толуола на основании расчетов электронного строения необходимо в биологическом эксперименте продумать, но определить, обладает ли вещество раздра-
хающим или общетоксическим действием.

3.7. Определение ОБУВ веществ, для которых установлены
ПДК в атмосферном воздухе населённых мест или в воде водоёмов
санитарно-бытового водопользования, проводится по уравнениям:

\[O_{БУВ} = (-1.69 + 0.481 ПДК_м.р.)^2 \] \hspace{1cm} (95)
\[O_{БУВ} = (-1.68 + 1.53 \sqrt{ПДК_сс.})^2 \] \hspace{1cm} (96)
\[O_{БУВ} = -13 + 97 ПДК_к (мг/л) (при ПДК_в ≥ 0.1) \] \hspace{1cm} (97)
\[O_{БУВ} = (0.499 + 4.45 \sqrt{ПДК_в} (мг/л))^2 \] \hspace{1cm} (98)

Определение ОБУВ органических веществ, обладающих раздражаю-
щими свойствами, проводится по уравнениям:

\[L_2 ОБУВ = 2.09 + 1.08 L_2 ПДК_сс. \] \hspace{1cm} (99)
\[ОБУВ = 1.56 + 47.9 ПДК м.р. \] \hspace{1cm} (100)

С выхом настоящих методических указаний утрачивают
силу "Методические указания по применению расчетного метода
обоснования ориентировочных безопасных уровней воздействия
ОБУВ вредных веществ в воздухе рабочей зоны ", утверждённые
Минздравом СССР (№ 1599-77 от 02.02.77).
Литература

1. Айцевич Г.Г., Малинина Е.М., Мальцева Н.М., Карпухина Е.А., "Определение токсикологических характеристик бензола для оценки вредности его действия". "Гигиена труда и профзаболевания". 5 т., вып. 8, с. 27-30.

2. ГОСТ 12.1.007-76 "Система стандартов безопасности труда. Классификация и обозначение опасных веществ".

3. Изменение к I ГОСТ 12.1.007-76.

5. Иванов Н.Т. "К вопросу об ускоренном гигиеническом нормировании промышленных веществ, обладающих раздражающим действием". "Гигиена труда и профессиональные заболевания". 1978, кн. 6, с. 51-52.

7. Каган Ю.С., Соснинович Л.М., Овсевенко Г.И. "Дифференцированный подход к установлению расчетных ОВУБ отдельных групп веществ и материалов". 2-й Всесоюзный симпозиум "Применение математических методов для оценки и прогнозирования реальной опасности веществ и пестицидов в вредной среде и органы", Киев, 1976, 78-78.

9. Люблина Е.И., Махеев М.И., Дворжин Э.А., Сидоров Г.И., Лисман М.Б. "О возможности расчета ориентировочных безопасных уровней воздействия (ОБУВ) органических веществ по доступным физико-химическим константам и параметрам острой токсичности". В соc."Некоторые вопросы экспериментальной промышленной токсикологии".М., 1977, с.28-44.

10. Максимов Г.Г., Хакимов Б.В. "Прогнозирование ОБУВ новых химических веществ в воздухе рабочей зоны по комплексу показателей о помощи многомерных спрайнов".
Доконированная рукопись. Д-4953.

11. Новиков С.М. "Изучение связей между параметрами токсичности и ПДК в отдельных группах вредных веществ". Гигиена и санитария. 1982, № 3, с.80-82.

12. Лавленко С.М., Юдина Т.В., Гусева В.А. "Методические подходы к оценке скрытых реакций некоторых систем организма при различных путях поступления токсических веществ". Гигиена и санитария. 1975, № 10, с.55-60.

13. Фаленберг Ю.С. "Классификация ксенобиотиков по локализации их действия на ферментные системы митохондрий". Бюлл. экспер. биол. и микр., 1962 г., с.42.

16. Уклова Н.П., Дьячков П.Н., Халепо А.И. "Электронное строение, параметры токсикометрии и гигиенические регламенты для галоидпроизводных толуола".
Гигиена труда и профзаболевания, 1980, № 6.
Приложение № I

ПЕРЕЧЕНЬ УСЛОВНЫХ ОПОЛОЖЕНИЙ:

1. \(L_{50} \) — смертельная концентрация вещества, вызывающая гибель 50% мышей или крыс при соответственно 2 и 4 часовым ингаляционном воздействии и последующем 14 дневном ожоге наблюдений.

2. \(L_{	ext{ac}} \) — порог острого (однократного) действия вещества для крыс при 4 часовым ингаляционном воздействии.

3. \(L_{50} \) — смертельная доза, вызывающая гибель 50% мышей или крыс при однократном введении вещества в желудок и последующим 14 дневном ожоге наблюдения.

4. \(m \) — молекулярная масса

5. \(\text{CH}_{1} \) — порог хронического действия для подопытных животных при ингаляционном воздействии на протяжении 4 месяцев по 4 час в день 5 раз в неделю.

6. \(\text{CH}_{1} \) — порог раздражающего действия для подопытных животных (кс — крыс) при однократном 4 часовым ингаляционном воздействии.

7. \(\text{CH}_{1} \) — порог раздражающего действия для человека при кратковременном воздействии по субъективным и объективным показателям.

8. \(\text{CH}_{1} \) — зона раздражающего действия, отношение \(l_{	ext{ac}} \) к \(l_{	ext{ch}} \)

9. \(\text{HIO}_{	ext{ac}} \) — отношение максимально достижимой концентрации паров вещества в воздухе при 20°C к \(L_{50} \), \(l_{	ext{ac}} \).

10. \(\text{HIO}_{	ext{ch}} \) — отношение максимально достижимой концентрации паров вещества в воздухе при 20°C к \(L_{	ext{ch}} \).

11. \(Z_{	ext{ch}} \) — зона хронического действия, отношение \(l_{	ext{ac}} \) к \(l_{	ext{ch}} \).

12. \(Z_{	ext{bf}} \) — зона биологического действия, отношение \(C_{50} \) к \(l_{	ext{ch}} \).

13. \(Z_{	ext{p}} \) — максимальная разовая концентрация вещества в атмосфере населения мест

14. \(Y_{	ext{ac}} \) — среднесуточная концентрация вещества в атм. ферном воздухе населенных мест
ПДК_В. — предельно допустимая концентрация веществ в воде водоемов санитарно-бытового водопользования.

L_{molar} — порог аллергенного действия вещества при ингаляции.
<table>
<thead>
<tr>
<th>№ уравнений</th>
<th>Авторы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3, 6-11</td>
<td>Чевков С.М.</td>
</tr>
<tr>
<td>4-5</td>
<td>Иванов Н.Г., Германова А.Л.</td>
</tr>
<tr>
<td>6</td>
<td>Иванов Н.Г., Бидевкина М.В.</td>
</tr>
<tr>
<td>8</td>
<td>Иванов Н.Г., Ковзин В.Г.</td>
</tr>
<tr>
<td>12</td>
<td>Максимов Г.Г., Хакимов Б.В.</td>
</tr>
<tr>
<td>13-21</td>
<td>Сидоров К.К.</td>
</tr>
<tr>
<td>22-24, 33-58, 63-69</td>
<td>Люсикина Е.И., Михеев М.И., Дворкин Э.А., Сидорин Г.И., Лисьян М.Б.</td>
</tr>
<tr>
<td>25-27</td>
<td>Фролова А.Д., Лисьян М.Б., Дворкин Э.А., Бергшпет Е.Г.</td>
</tr>
<tr>
<td>28-31</td>
<td>Ротенберг К.С.</td>
</tr>
<tr>
<td>32</td>
<td>Старынин С.В.</td>
</tr>
<tr>
<td>38-39</td>
<td>Восканян И.М., Звездай В.И., Халепо А.И.</td>
</tr>
<tr>
<td>30</td>
<td>Завьяла Г.И.</td>
</tr>
<tr>
<td>31-34</td>
<td>Каган К.С., Сасинович Л.М.</td>
</tr>
<tr>
<td>32</td>
<td>Иванов Н.Г., Бельцер П.Л., Хрустов Н.Е.</td>
</tr>
<tr>
<td>33-34</td>
<td>Уланова И.П., Дьячков П.Н., Халепо А.И.</td>
</tr>
<tr>
<td>70</td>
<td>Сидоров К.К., Уланова И.П., Теликина Л.А., Никитин И.А., Красовский Г.Н., Солдакова З.И., Щербаков Б.Д.</td>
</tr>
<tr>
<td>73-100</td>
<td>Теликина Л.А., Иванов Н.Г.</td>
</tr>
</tbody>
</table>